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Abstract: Centrality metrics evaluate paths between all possible pairwise combinations of sites on a land-
scape to rank the contribution of each site to facilitating ecological flows across the network of sites. Computa-
tional advances now allow application of centrality metrics to landscapes represented as continuous gradients
of habitat quality. This avoids the binary classification of landscapes into patch and matrix required by patch-
based graph analyses of connectivity. It also avoids the focus on delineating paths between individual pairs of
core areas characteristic of most corridor- or linkage-mapping methods of connectivity analysis. Conservation
of regional habitat connectivity has the potential to facilitate recovery of the gray wolf (Canis lupus), a species
currently recolonizing portions of its historic range in the western United States. We applied 3 contrasting
linkage-mapping methods (shortest path, current flow, and minimum-cost-maximum-flow) to spatial data
representing wolf habitat to analyze connectivity between wolf populations in central Idaho and Yellowstone
National Park (Wyoming). We then applied 3 analogous betweenness centrality metrics to analyze connectiv-
ity of wolf habitat throughout the northwestern United States and southwestern Canada to determine where
it might be possible to facilitate range expansion and interpopulation dispersal. We developed software to
facilitate application of centrality metrics. Shortest-path betweenness centrality identified a minimal network
of linkages analogous to those identified by least-cost-path corridor mapping. Current flow and minimum-cost-
maximum-flow betweenness centrality identified diffuse networks that included alternative linkages, which
will allow greater flexibility in planning. Minimum-cost-maximum-flow betweenness centrality, by integrating
both land cost and habitat capacity, allows connectivity to be considered within planning processes that seek
to maximize species protection at minimum cost. Centrality analysis is relevant to conservation and landscape
genetics at a range of spatial extents, but it may be most broadly applicable within single- and multispecies
planning efforts to conserve regional habitat connectivity.
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Utilización del Mapeo de V́ınculos y el Análisis de Centralidad en un Gradiente de Hábitats para Conservar la
Conectividad de Poblaciones de Lobo Gris en el Occidente de Norte América

Resumen: Las medidas de centralidad evalúan las v́ıas entre todas las combinaciones pareadas posibles
de sitios en un paisaje para clasificar la contribución de cada sitio en la facilitación de los flujos ecológicos
en una red de sitios. Los avances de la computación permiten la aplicación de medidas de centralidad en
paisajes representados como gradientes continuos de calidad de hábitat. Esto evita la clasificación binaria de
paisajes en parches y matriz como lo requiere el análisis de grafos de conectividad basado en parches. Esto
también evita el enfoque en la delineación de v́ıas entre pares individuales de áreas núcleo caracteŕıstico
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2 Centrality and Habitat Connectivity

de la mayoŕıa de los métodos de mapeo de corredores o de v́ınculos en el análisis de conectividad. La
conservación de la conectividad de hábitat regional tiene el potencial de facilitar la recuperación del lobo
gris (Canis lupus), una especie que actualmente esta recolonizando porciones de su rango de distribución
histórica en el occidente de Estados Unidos. Aplicamos 3 métodos de mapeo de v́ınculos contrastantes (v́ıa
más corta, flujo de corriente y costo mı́nimo-flujo máximo) a datos espaciales representando el hábitat de lobos
para analizar la conectividad entre poblaciones de lobo en Idaho centra y el Parque Nacional Yellowstone
(Wyoming). Posteriormente aplicamos 3 medidas de centralidad análogas para analizar la conectividad de
hábitat de lobos en el noroeste de Estados Unidos y el suroeste de Canadá para determinar si seŕıa posible
facilitar la expansión del rango y la dispersión interpoblacional. Desarrollamos software para facilitar la
aplicación de las medidas de centralidad. La centralidad de la v́ıa más corta identificó una red mı́nima de
v́ınculos análogos a los identificados por mapeo de corredores con la v́ıa de menor costo. La centralidad de
flujo actual y de costo mı́nimo-flujo máximo identificó redes difusas que incluyeron v́ınculos alternativos,
que permitirán una mayor flexibilidad en la planificación. La centralidad de costo mı́nimo-flujo máximo,
mediante la integración de costo de la tierra y la capacidad del hábitat, permite considerar a la conectividad
en los procesos de planificación que buscan maximizar la protección de especies al menor costo. El análisis de
centralidad es relevante para la conservación y la genética de paisaje en un rango de extensiones espaciales,
pero puede ser ampliamente aplicable en esfuerzos de planificación de la conservación de la conectividad del
hábitat de una o múltiples especies.

Palabras Clave: Canis lupus, centralidad, corredor, flujo de redes, teoŕıa de circuitos, teoŕıa de grafos, v́ıa de
menor costo

Introduction

Consideration of landscape connectivity in conservation
planning has increasingly shifted from a focus on preserv-
ing static landscape elements such as corridors to facili-
tating functional connectivity. Functional connectivity is
defined as ecological processes such as demographic and
genetic flows that support persistence of peripheral pop-
ulations and long-term maintenance of a species’ evolu-
tionary potential (Taylor et al. 2006; Pressey et al. 2007).
Due in part to computational limitations, most current
reserve-design efforts remain focused on landscape pat-
tern (e.g., selection of areas that capture species occur-
rences) (Cabeza & Moilanen 2001; Pressey et al. 2007).
However, effective conservation of connectivity requires
evaluation of how landscape composition and structure
influence ecological and evolutionary processes at multi-
ple levels of biological organization (Rayfield et al. 2011).

Here, we describe 3 contrasting methods of connec-
tivity analysis that employ alternative assumptions con-
cerning the relation between habitat and movement and
offer complementary information for both corridor de-
sign and regional conservation planning. Graph theory
provides a common conceptual framework that under-
lies all 3 methods. In graph theory, a graph (Fig. 1) is a
set of nodes in which pairs of nodes may be connected
by edges that represent functional connections (e.g., dis-
persal) between nodes (Urban et al. 2009). Edges may
be assigned weights that represent an attribute such as
habitat quality. A sequence of nodes connected by edges
forms a path. Although they are highly abstracted de-
pictions of landscape pattern, graphs may reveal emer-
gent aspects of landscape structure that are not otherwise
discernible.

Graph theory has been widely applied in landscape
ecology and conservation planning (Urban et al. 2009).
Such applications include analyses that represent contin-
uous habitat gradients as a binary patch-matrix structure,
with patches (nodes) linked by edges whose attributes
(e.g., weight) are defined on the basis of geographic
distance or attributes of the intervening matrix (Bodin
et al. 2006; Urban et al. 2009). This patch-based approach
contrasts with methods used within geographic informa-
tion systems (GIS) to delineate corridors between pairs
of habitat patches in raster grids (Beier et al. 2008). Al-
though seldom transparent to the user, graph algorithms
also underlie these latter methods, which analyze con-
tinuous habitat gradients by representing each raster cell
(pixel) as a node in a regular lattice (an arrangement of
points in a regular pattern). Edges in such graphs con-
nect only a node and its immediately adjacent neighbors.
We term these types of graphs landscape lattices (Sup-
porting Information) in contrast to graphs that delineate
discrete patches within a landscape matrix (Supporting
Information).

Corridor-delineation methods available in GIS software
analyze raster data by representing cost (e.g., energetic
cost or mortality risk) of movement through different
habitat types as distance (points in less permeable habi-
tat are conceived as farther apart). Such methods then
use computationally efficient algorithms to identify the
route between 2 predetermined endpoints that has the
shortest total distance (least total cost) (Supporting Infor-
mation; Newman 2010). We use the term shortest path
(Supporting Information) in place of least-cost path to
avoid confusing the cost of moving between patches
with monetary cost (e.g., of land purchase) (Newman
2010). Recent applications of shortest-path methods have
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Figure 1. A simple graph with 5 nodes and 6 edges
demonstrates contrasts between graph analyses with
shortest- or least-cost-path, current-flow, and
maximum-flow methods. (a) Edge values shown may
be derived from models of habitat quality. Edge
values are proportional to conductance (current flow)
and flow capacity (minimum-cost-maximum-flow)
and inversely proportional to distance (shortest path).
(b–d) Pairwise flow between nodes A and E, with line
widths proportional to flow ([b] shortest-path analysis;
[c] current-flow analysis with a 3-ampere source at A;
[d] maximum-flow analysis with a 3-unit flow source
at A and a 3-unit flow sink at E). (e–g) Centrality
analysis of flow between all node pairs in the graph,
with node sizes proportional to centrality values
(open circles indicate zero values; [e] shortest-path
betweenness centrality; [f] current-flow betweenness
centrality; and [g] maximum-flow betweenness
centrality).

broadened their focus from identifying a single path or
corridor to identifying a set of near-optimal paths that
may be termed a habitat linkage or landscape linkage
(Chetkiewicz et al. 2006; Beier et al. 2008).

We compared shortest-path analysis with 2 alternate
connectivity-analysis methods, current flow and network
flow. Current-flow methods examine probabilistic flow
across all possible paths, whereas network-flow methods
identify optimal flow that could use but may not use all
possible paths. Current-flow models use algorithms from
electrical-circuit theory to evaluate connectivity (McRae
et al. 2008; Supporting Information). These methods
treat landscapes as conductive surfaces (i.e., networks
of nodes connected by resistors). When current is in-
jected into a source node and allowed to flow across a
network until it reaches a target node, the amount of
current flowing through each intermediate node reflects
the likelihood that a “random walker” leaving the source

node and moving along edges with probabilities propor-
tional to edge weights will pass through the intermediate
node on its way to the target node. By modeling the
movement of random walkers, current-flow models inte-
grate the contributions of all possible pathways across
a landscape or network (Fig. 1c). As in electrical cir-
cuits, the addition of new pathways increases connectiv-
ity by distributing flow across more routes (McRae et al.
2008).

Network-flow models frame connectivity analysis as an
optimization problem rather than as probabilistic move-
ment (Supporting Information; Phillips et al. 2008). Net-
work flow is analogous to the behavior of water in a
pipe, in that it has constrained capacity (the amount of
flow on an edge cannot exceed its capacity) and flow is
conserved (the amount of flow into a node equals the
amount of flow out of it, except when the node is a
source or sink). There are several types of network-flow
analyses. In a maximum-flow analysis, each edge is as-
signed a flow less than or equal to its capacity, which
maximizes total flow between a source and a sink node.
Although there may be many alternative sets of paths in a
network that allow the maximum flow, computationally
efficient maximum-flow algorithms tend to identify max-
imum flows with low total number of edges (Ahuja et al.
1993). Minimum-cost-maximum-flow algorithms, in con-
trast, identify which of the alternative maximum-flow sets
has minimum total cost (here, monetary cost of land ac-
quisition or management). Minimum-cost-maximum-flow
may be more informative than maximum-flow analyses on
landscape lattices, particularly when edge capacities are
relatively similar, because a large number of equivalent
maximum-flow solutions exist on such lattices.

Centrality and Regional Connectivity Analysis

Shortest path, current flow, and network flow have
largely been applied to evaluate options for linking prede-
termined endpoints rather than analyzing habitat connec-
tivity across the landscape (but see Phillips et al. 2008).
However, a group of analogous graph-theory metrics are
based on the concept of centrality (Supporting Informa-
tion). These metrics consider paths between all possible
pairs of nodes in order to evaluate the role of each node
in mediating ecological flows (Bunn et al. 2000; Borgatti
2005). The loss of a node that lies on a large propor-
tion of the paths in the network would disproportion-
ately lengthen distances or transit times between nodes
(Brandes 2001). A wide variety of centrality metrics
have been proposed (Newman 2010). Many have been
applied to analyze patch-based representations of land-
scapes (Bodin & Norberg 2007; Estrada & Bodin 2008).
We did not attempt to comprehensively review central-
ity metrics; rather, we focused on 3 metrics that are
analogous to the 3 major methods of linkage mapping
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described above (Chetiewicz et al. 2006; McRae et al.
2008; Phillips et al. 2008).

Centrality calculations increase in computational com-
plexity at a polynomial rate (typically quadratic to cubic)
as the number of nodes increases (Ahuja et al. 1993).
Although centrality analysis has been applied to patch-
based representations of landscapes, networks were typi-
cally limited to hundreds of nodes or less (Estrada & Bodin
2008). Computationally efficient algorithms for analysis
of large networks, which have recently been developed
for purposes such as ranking web pages on the inter-
net, allow analysis of landscape connectivity at a resolu-
tion that makes simplifying assumptions less necessary
(Hagberg et al. 2008). This facilitates application of cen-
trality metrics to contexts in which a continuous habitat
gradient is more ecologically realistic than a binary patch-
matrix framework (Chetkiewicz et al. 2006).

Because centrality analysis produces a continuous
surface of values, it facilitates integration of the 3
connectivity-analysis methods into commonly used re-
serve design algorithms along with inputs representing
species distribution or other conservation criteria (e.g.,
Possingham et al. 2000; Moilanen et al. 2009). The meth-
ods we developed thus avoid 2 key simplifications of
landscape complexity. Because centrality metrics analyze
paths between all node pairs, we avoided the a priori
identification of endpoints necessary in current methods
for delineating habitat linkages. By applying centrality
analysis to graphs that represent landscapes as regular lat-
tices, we avoided the binary classification of landscapes
into patch and matrix required by patch-based graph
analyses.

We used shortest path, current flow, and minimum-
cost-maximum-flow (Supporting Information) to delin-
eate habitat linkages between a single source and tar-
get patch and contrasted the results. We then developed
3 analogous centrality metrics that analyze connectivity
across a landscape without reference to specific source
and target patches. We contrasted results from the cen-
trality metrics and assessed their relevance to regional
conservation planning in a case study of a gray wolf
(Canis lupus) metapopulation in the northwestern
United States and southwestern Canada.

Methods

Linkage Analysis Methods and Their Analogous
Centrality Metrics

Assumptions underlying the 3 methods of habitat-
connectivity analysis affect conclusions about the con-
tributions of different edges to connectivity (Fig. 1). In a
simple example graph, shortest-path analysis assigns all
priority to a single path with the least cumulative dis-
tance (Fig. 1b). Current-flow analysis identifies 2 edges

with highest current (used most frequently by random
walkers). All other edges have lower but nonzero cur-
rent levels that indicate the degree to which the other
edges provide alternative pathways for random walkers
moving from the source node to the target node (Fig. 1c)
(Newman 2005; McRae et al. 2008). Maximum-flow anal-
ysis between source A and sink E (Fig. 1d) identifies a
path with relatively high flow and a path with relatively
low flow. Maximum-flow analysis assigns zero flow to
edges not on these paths because these edges cannot
contribute to increasing the total flow. Because there is
only one maximum-flow solution for flow from A to E in
Figure 1, minimum-cost-maximum-flow would be identi-
cal to maximum-flow.

Centrality analyses extend these methods from single
pairs of source-target nodes to all pairs of nodes in a
graph (Newman 2010). The 3 centrality metrics consid-
ered here are variants of betweenness centrality (BC),
in that they measure to what extent a node contributes
to paths or flows between all other nodes (Borgatti &
Everett 2006; Newman 2010). Shortest-path BC identifies
the one or several shortest (geodesic) paths that connect
each pair of nodes on a graph and counts the number of
such shortest paths in which a node is included (Borgatti
& Everett 2006). Current-flow BC assesses the centrality
of a node on the basis of how often, summed over all node
pairs, the node is traversed by a random walk between 2
other nodes (Newman 2005). Minimum-cost-maximum-
flow BC evaluates a node’s contribution to connectivity
on the basis of portion of the minimum-cost-maximum-
flow that must pass through that node, summed over all
node pairs (Freeman et al. 1991).

In Figure 1 shortest-path BC (Fig. 1e; Supporting Infor-
mation) resembles shortest-path results between a node
pair (Fig. 1b) because it assigns high centrality to node
C, which lies on the shortest path between many node
pairs, and zero centrality to nodes (B, E), which do not
lie on the shortest paths between any pair of nodes.
Current-flow BC (Fig. 1f; Supporting Information) ranks
the importance (for facilitating flow) of nodes similarly
as does shortest-path BC, but centrality values are more
evenly distributed among nodes and there are no nodes
of zero centrality due to the model’s random-walk behav-
ior. Maximum-flow BC ranks nodes similarly to current
flow BC, but values are distributed more evenly (Fig. 1g).
If all edges have equal cost, results of minimum-cost-
maximum-flow BC (not shown) resemble maximum-flow
BC.

Case Study

The gray wolf was extirpated from the northwestern
United States by the 1940s, but it remained extant
through much of southwestern Canada (Boyd & Pletscher
1999; Wayne & Hedrick 2011). Natal dispersal of wolves
averages 100 km (Boyd & Pletscher 1999). Natural
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Figure 2. Model of habitat quality
for gray wolf in the northwestern
United States and southwestern
Canada on the basis of land cover,
slope, roads, and human population
data. Edge weights in the
connectivity analyses (Figs. 3–4)
are derived from this habitat model.

recolonization via dispersal from Canada reestablished
wolves in northwestern Montana in the 1980s and in
northern Washington in 2008 (Wayne & Hedrick 2011).
Reintroduction of wolves to central Idaho and northwest-
ern Wyoming in 1995–1996 resulted in populations of
>1000 in those areas and subsequent dispersal into Ore-
gon, Utah, and Colorado (Wayne and Hedrick 2011).
However, ongoing litigation has focused attention on
whether habitat connectivity in the U.S. northern Rocky
Mountains is sufficient to ensure continued genetic ex-
change between the region’s 3 major wolf populations
(Vonholdt et al. 2011; Wayne & Hedrick 2010). Analysis
of habitat connectivity for the wolf may identify likely
sources of natural dispersal from extant populations into
currently unoccupied habitat and evaluate what areas
have the greatest probability of facilitating continuing
exchange among existing populations.

In developing a habitat model over this region (the
U.S. states of Washington, Oregon, Montana, Idaho, and
Wyoming, and the southern portions of the Canadian
provinces of Alberta and British Columbia), we were con-
strained by the limited set of habitat variables for which
data are available in all jurisdictions. Although empirical
models of wolf habitat have been developed for the U.S.
northern Rocky Mountains (Oakleaf et al. 2006), data are
not available to allow their extrapolation across the en-
tire region. We sought to demonstrate application of new

methods of connectivity analysis rather than developing
new habitat models. We therefore used a previously pub-
lished habitat model (Fig. 2) that predicted wolf habi-
tat quality from data on land cover, primary productiv-
ity, slope, road density, and human population density
(Carroll et al. 2006). Details of the habitat model are in
Supporting Information. We used a metric combining
road density and human population density to represent
factors negatively associated with wolf survival (Fuller
et al. 2003). Because estimates of ungulate abundance
are inconsistent across jurisdictional boundaries, we used
land cover and tasseled-cap greenness, a satellite-imagery-
derived metric, as a surrogate for prey density. Because
wolves have reduced hunting success on steep terrain,
we incorporated a negative effect of slope (Carroll et al.
2006). Because the above habitat variables may affect se-
lection of dispersal habitat differently than selection of
habitat for permanent occupancy, a subsequent refine-
ment of the analysis with a model that is based on disper-
sal data would improve its accuracy (see Discussion).

Graph Analyses at Multiple Resolutions and Extents

We developed and contrasted analyses of wolf habitat
connectivity at 2 spatial extents. First, we applied 3
linkage-mapping methods (shortest path, current flow,
and minimum-cost-maximum-flow) at the local extent to
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analyze connectivity between 2 areas occupied by source
populations of wolves in central Idaho and Yellowstone
National Park, Wyoming (Fig. 2). In this analysis, we di-
vided the region into a lattice of hexagons, each with an
area of 5 km2. Each hexagon’s centroid became a graph
node (total 21,889 nodes) that was connected to the
6 hexagons that were its immediate neighbors. Linkage
mapping is a special case of centrality analysis termed sub-
set centrality. In contrast with the application of central-
ity to analyze all pairs of nodes in a graph, subset central-
ity considers paths between the nodes of the graph that
fall within the source and target patches (Hagberg et al.
2008). To illustrate application of the local minimum-
cost-maximum-flow analysis, we simply assigned private
lands 2 times the management or acquisition cost of pub-
lic lands.

We then applied 3 centrality metrics (shortest-path,
current flow, and minimum-cost-maximum-flow BC) anal-
ogous to the linkage-mapping metrics to assess connectiv-
ity across the northwestern United States and southwest-
ern Canada (Fig. 2) with 2 lattices, one of hexagons with
areas of 50 km2 (n = 23,831 nodes) and one of hexagons
with areas of 100 km2 (n = 9601 nodes). Use of 2 reso-
lutions was necessary because calculation of minimum-
cost-maximum-flow BC was computationally infeasible
on the higher-resolution graph of 23,831 nodes. For the
regional minimum-cost-maximum-flow analysis, we as-
signed each node a cost of 1. Minimum-cost-maximum-
flow analysis with uniform cost values on all nodes results
in identification of the maximum-flow solution of mini-
mum total area (minimum number of nodes).

In all analyses, we used either undirected or symmetric
directed graphs (Supporting Information) in which the
weight of edge i-j (from node i to j) equaled the weight
of the edge j-i (Newman 2010). Edge weights were de-
rived from the mean habitat-quality value of the edge’s
2 end nodes. We used untransformed habitat-quality val-
ues from the conceptual model, which ranged from 1 to
1000, to derive conductance (current flow) and capac-
ity (minimum-cost-maximum-flow) (Supporting Informa-
tion). We used the reciprocal of the mean habitat-quality
value to represent distance in calculating the shortest-
path metrics. Each of the 3 methods thus assigned differ-
ent attributes to the graph edges (distance, conductance,
and capacity for shortest-path, current flow, and network
flow, respectively) that in effect represent alternative as-
sumptions of how habitat quality affects dispersal (Sup-
porting Information).

Comparison of Graph Metrics

We contrasted results of the different metrics by deriving
a Spearman rank correlation matrix of node-centrality val-
ues. We hypothesized that metrics might show stronger
relations at their extreme rather than mean values. There-
fore, we also used quantile–quantile regression to as-

sess whether higher quantiles (e.g., 99th percentiles) of
the shortest-path BC metric were significantly correlated
with current flow and minimum-cost-maximum-flow BC
(Cade & Noon 2003), as might be expected if shortest
paths were subsets of the multiple paths identified by the
latter 2 methods. To assess the degree to which priority
areas for connectivity conservation differed from priority
areas for other potential conservation features, we deter-
mined the proportion of areas with highest quantile of
centrality values that fell within source (lambda, or intrin-
sic population growth rate > 1) or core (probability of
occupancy > 50%) habitat. Population growth rates and
occupancy were predicted by a spatially explicit popu-
lation model that was based on the same habitat model
inputs but was limited to the U.S. portion of the analysis
region (Carroll et al. 2006).

We calculated shortest-path and current-flow BC with
the NetworkX library (version 1.3) in Python (version
2.6) (van Rossum & Drake 2006; Hagberg et al. 2008).
Network flow metrics were derived with the C++ li-
brary LEMON (Library for Efficient Modeling and Opti-
mization in Networks, version 1.2) (EGRES 2010). We
used Hexsim software (Schumaker 2011) to import and
export files from a GIS. We developed a program,
the Connectivity Analysis Toolkit (freely available at
www.connectivitytools.org), which has a graphical user
interface that allows generation of centrality metrics from
habitat data without the need to learn Python or C++
(Carroll 2010).

Results

Computational feasibility varied widely among the dif-
ferent metrics, due to the complexity of the underlying
algorithms (Newman 2010) and the specifics of the imple-
mentation in the software (Carroll 2010). In the regional-
extent analysis, shortest-path BC showed low require-
ments for both memory and computational time (<1 GB
and <1 h on a 3 GHz desktop system), whereas current-
flow BC required large amounts of memory (>10 GB)
(Carroll 2010). Minimum-cost-maximum-flow BC re-
quired low amounts of memory (<1 GB) but very long
computational times (>1000 h) for the regional-extent
analysis, but it was completed in <3 h for the local-extent
analysis, which considered source and target patches en-
compassing approximately 100 hexagons (Fig. 3c).

Shortest-path analysis identified the single best (least
cost) path between each pair of source and target
hexagons (Fig. 3a). Current-flow analysis identified areas
of high current flow along a more diffuse area surround-
ing the shortest path, as well as along alternate paths
(Fig. 3b). Minimum-cost-maximum-flow analysis identi-
fied a set of paths that was diffuse in the western por-
tion of the linkage, but constricted in the eastern por-
tion due to the lower proportion of public lands in that
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Figure 3. Graph-based analysis of habitat
connectivity for gray wolf between central Idaho and
Yellowstone National Park. The local-extent
analysis compares 3 linkage mapping methods or
subset-centrality metrics that are based on
(a) shortest- or least-cost path, (b) current flow,
and (c) minimum-cost-maximum-flow
(min-cost-max-flow). Parks and wilderness areas
are crosshatched.

area (Fig. 3c). In the regional-extent analysis, shortest-
path BC identified a minimal network connecting the
regions of high habitat value (Fig. 4a). Current-flow BC
identified areas that encompassed the linkages derived
from the shortest-path betweenness analysis, but these
areas were more diffusely distributed (Fig. 4b) than were
the shortest-path priority areas. Minimum-cost-maximum-
flow BC results resembled current-flow results, but were
only available at coarser resolution due to their greater
computational complexity (Fig. 4c).

At the resolution of 50 km2 hexagons (n = 23,831),
shortest-path and current-flow BC values from the re-
gional analysis were weakly correlated with habitat-
quality value (0.55 and 0.58, respectively) and with each
other (0.58). At the resolution of 100 km2 hexagons (n =
9601), correlations were similar (0.59, 0.55, and 0.61, re-
spectively). Additionally, minimum-cost-maximum-flow
BC at this resolution was highly correlated with current-
flow BC (0.85) but weakly correlated with shortest-
path BC (0.45) and habitat-quality value (0.36). Although

shortest-path BC showed low correlation with other
centrality metrics in the Spearman correlation tests,
quantile–quantile regression results showed a signifi-
cant relation (p < 0.001) of shortest-path BC with the
higher percentiles of both current-flow and minimum-
cost-maximum-flow BC (Supporting Information). Source
habitat (12.8% of the U.S. portion of the region) held
20.8%, 20.2%, and 21.7%, respectively, of the areas with
highest centrality values (top 20%) for the shortest-path,
current-flow, and minimum-cost-maximum-flow BC met-
rics, whereas core or frequently occupied habitat (25.3%
of the region) held 36.6%, 35.6%, and 42.9%, respectively,
of the areas with highest centrality values for the 3 met-
rics.

Discussion

Because centrality analysis simultaneously considers the
relations between all areas on a landscape, it provides a
means to quantitatively incorporate connectivity within
the planning process by ranking the contribution of those
areas to facilitating ecological flows. Application of cen-
trality metrics to lattices (graphs with nodes arranged in
a regular pattern) avoids both the binary classification
of landscapes into patch and matrix required by patch-
based graph analyses and the focus on paths between a
single pair of patches characteristic of corridor-mapping
methods. Rather than addressing connectivity by adding
linkages to a system of preidentified core areas, it is pos-
sible to compare the relative conservation priority of
all linkages in a region and incorporate this information
within the multicriteria optimization framework of most
conservation-planning software (Possingham et al. 2000;
Moilanen et al. 2009).

Although centrality metrics from exploratory analyses
such as ours may be used to inform regional planning,
input data (Carroll et al. 2006) and key assumptions of
the methodology should be tested and revised on the ba-
sis of observed connectivity data and results from more-
detailed population models. Connectivity models are of-
ten based on data on species distribution and rarely test
the assumption that dispersal habitat resembles habitat
that can be occupied. Habitat variables, such as vegeta-
tion structure, influence selection of both dispersal and
permanently occupied habitat (Chetkiewicz et al. 2006),
but short-term dispersal can occur through habitat that
lacks resources for long-term occupancy. It is increasingly
possible to rigorously build and test connectivity models
from observed levels of dispersal and gene flow derived
from genetic and telemetry data (Lee-Yaw et al. 2009;
Schwartz et al. 2009; Richard & Armstrong 2010). Our
goal was not to contrast these 2 approaches, but rather
to describe and compare 3 alternative graph-based con-
nectivity methods that are relevant to analysis of either
habitat or dispersal data.
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Figure 4. Analysis of habitat connectivity for gray wolf in the northwestern United States and southwestern
Canada. The regional-extent connectivity analysis compares results from 3 metrics on the basis of
(a) shortest-path, (b) current flow, and (c) minimum-cost-maximum-flow betweenness centrality. The area of the
local-extent analysis (Fig. 2) is outlined (rectangle). The units in which the 3 centrality metrics (Figs. 4a–c) are
expressed are not directly comparable.

Building and testing connectivity models with empiri-
cal dispersal data can help identify the ecologically ap-
propriate spatial resolution and extent for conserving
connectivity. Depending on the species of interest, re-
gional habitat linkages may be designed to facilitate indi-
vidual dispersal events or multigenerational genetic ex-
change via occupied stepping-stone habitat. Additionally,
the degree to which such functional connectivity influ-
ences population viability (i.e., how much connectivity
is enough to maintain a population) depends on factors
such as population size and may be evaluated with more
complex population models that simulate both demo-
graphic and dispersal processes (Carroll et al. 2006).

Whereas shortest-path models implicitly assume dis-
persers have perfect knowledge of the landscape, current
flow assumes dispersers have no knowledge of the path
more than one step ahead (Newman 2005). Real-world
behavior of dispersers may fall somewhere between these
extremes (McRae et al. 2008; Richard & Armstrong 2010).
Shortest-path methods have been used to develop empiri-
cal multivariate models of habitat connectivity (Schwartz
et al. 2009; Richard & Armstrong 2010). Predictions from
current flow-based models are also highly correlated with
observed genetic distance in several plant and animal
populations (McRae et al. 2008; Lee-Yaw et al. 2009).
A comprehensive evaluation of the relative accuracy of
these 2 methods in a range of species would be infor-
mative. However, given that all graph-based methods are
simplified representations of complex dispersal behavior,
we advocate use of contrasting metrics as complementary
sources of information rather than focusing on a single
best metric.

We recommend that planning efforts focused on con-
necting a single pair of core areas (Fig. 3) compare re-
sults from the 3 methods to identify primary and alter-

native linkage options. In our case study, the compar-
ison suggests it would be informative to evaluate 2 al-
ternative or complementary linkage zones (Figs. 3b–c).
In minimum-cost-maximum-flow sensitivity analyses, the
southern linkage zone for wolves, which is longer than
the northern linkage zone but contains less private land,
received increasing priority as the difference in cost be-
tween public and private land increased (not shown).
Unlike shortest-path analyses, which may combine land
cost and habitat quality into a single aggregate index,
minimum-cost-maximum-flow incorporates the 2 as dis-
tinct criteria, facilitating such sensitivity analyses.

Given that it is computationally challenging to derive
minimum-cost-maximum-flow BC over regional extents
(Fig. 4c), we suggest regional planning efforts compare
results from shortest-path and current-flow BC analyses
(Figs. 4a–b). Higher-resolution, local extent analysis of in-
dividual linkages (Fig. 3) can be placed in context using
the priority assigned to the linkage area in regional anal-
yses (Fig. 4). Although resolution of the landscape lattice
remains limited by computational feasibility, it may often
be possible to approximate resolutions relevant to habi-
tat associations of the species of interest. In some cases,
however, a graph derived from a patch-based represen-
tation of a landscape may be more informative than a
lattice-based graph (e.g., if the coarse resolution of the lat-
tice obscures key habitats such as riparian forest patches
within an upland matrix). The software we developed
can also be applied to such nonlattice graphs (Carroll
2010).

Our quantile–quantile regression results suggest that
areas with high values of shortest-path BC are a sub-
set of areas with high current flow and minimum-
cost-maximum-flow BC values. Areas prioritized by
shortest-path BC, which were either central to zones of
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high-quality habitat or formed shortest paths between
them, identify the minimal set of linkages whose loss
would greatly reduce regional connectivity (Fig. 4a). In
contrast, the zones identified by current-flow BC assist
in incorporating redundancy within a linkage network,
which may be important for designing networks that are
resilient to changing climate and land-use patterns or en-
vironmental catastrophes (Fig. 4b) (McRae et al. 2008).

Because nodes near the study-area boundary inherently
receive low centrality values (Fig. 4), the analysis area
should typically extend beyond the area of interest if
data permits. When the scaling of habitat-quality value is
not derived from a statistical model that is based on dis-
persal data, sensitivity analysis with alternate scalings of
habitat-quality values (e.g., transforming values by squar-
ing them) can help assess the relative influence on cen-
trality results of a node’s habitat-quality value and location
in relation to the edge of the analysis area.

Although predictions from network-flow models have
not yet been compared with empirical data on disper-
sal, these algorithms’ ability to address flow conservation
(Supporting Information) and to consider both cost and
capacity suggests they may offer models of connectivity
that can be integrated within processes that seek to max-
imize species protection at minimum cost (Phillips et al.
2008). The minimum-cost-maximum-flow BC metric we
used also resembles more complex spatial population
models in that it effectively weights the importance of
each pairwise relation by the habitat-quality value (and
hence ability to produce dispersers) of the source node.
Analyses such as ours that prioritize areas with high cen-
trality on the present-day landscape provide a heuristic
approach to incorporating connectivity into multicrite-
ria reserve-selection algorithms (Possingham et al. 2000;
Moilanen et al. 2009). Full integration of centrality analy-
sis within such algorithms, which requires comparison of
the centrality of reserves within many alternate reserve
designs, remains computationally challenging.

We focused our case study on informing conservation
planning for a single species, the gray wolf. Facilitating
dispersal between wolf populations within the western
United States and Canada has been proposed as a method
to enhance the long-term genetic diversity and viability of
the regional wolf metapopulation (Vonholdt et al. 2010).
Areas of high centrality were often associated with source
or core habitats (Carroll et al. 2006), but they also were
found outside those areas. This suggests that conserving
connectivity of wolf metapopulations may require differ-
ent strategies than conserving core populations. Results
from our analysis may aid planning to enhance connec-
tivity via habitat protection or reduction of mortality for
dispersing wolves within linkage zones. Similar analyses
may have broad relevance to conservation planning at a
variety of spatial scales appropriate to metapopulations
of other species. Centrality analyses may also inform the
increasing number of multispecies planning efforts by

agencies and nongovernmental organizations that seek
to conserve regional habitat connectivity (Western Gov-
ernors Association 2008).
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